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Phase ordering in nematic liquid crystals

Colin Dennistort Enzo Orlandin? and J. M. Yeomaris
IDepartment of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218
2INFM-Dipartimento di Fisica, Universitali Padova, 1-35131 Padova, Italy
3Department of Physics, Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, United Kingdom
(Received 9 January 2001; published 16 July 2001

We study the kinetics of the nematic-isotropic transition in a two-dimensional liquid crystal by using a lattice
Boltzmann scheme that couples the tensor order parameter and the flow consistently. Unlike in previous
studies, we find that the time dependences of the correlation function, energy density, and number of topologi-
cal defects obey dynamic scaling laws with growth exponents that, within the numerical uncertainties, agree
with the value 1/2 expected from simple dimensional analysis. We find that these values are not altered by the
hydrodynamic flow. In addition, by examining shallow quenches, we find that the presence of orientational
disorder can inhibit amplitude ordering.
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I. INTRODUCTION found behavior consistent with thé'? power law. In addi-
tion, their simulation of theXY model with very large am-

The phase ordering kinetics of liquid crystal systems un-plitude noise(considerably larger than that found experimen-
dergoing nematic-isotropic transitions has attracted considetally) agreed with the'”> power law. A later more rigorous
able experimentgl1-3] and theoretical4—7] interest. One calculation of the friction coefficient for defect dynamics
of the reasons is that nematic liquid crystals provide an exshowed that it does not diverge with system size, but only
perimentally accessible system with continuous symmetryith vanishing defect velocityf11]. This suggests that it
that, unlike systems with discrete symmetry, can displayshould be possible to measure & behavior in a simula-
stable topological defects. During phase ordering these deion.
fects interact and annihilate and it is believed that many of Another important issue that remains essentially unex-
the universal properties of the late stage kinetic growth camlored is the extent to which the presence of hydrodynamic
be explained in terms of the defect dynamics. This propertynodes coupled to the nematic order parameter can affect the
is also shared by the well studigd(N) model. However, |ate stage kinetic growth. It is well known that hydrodynamic
here the continuous symmetry belongs to a different homointeractions can crucially influence phase transition kinetics,
topy class[the O(N) model lacks the inversion symmetry for example, in simple binary fluid mixtures and in gas-
present in the director field of nematic liquid crysfals is  liquid systems[12,13. In liquid crystals the coupling be-
not yet completely clear if such a difference in the symmetrytween the local molecular orientation and the velocity field
can modify the ordering dynamics of the nematic liquid crys-influences the dynamics of the liquid crystal in a complicated
tal. manner. For example, shear flow will cause the molecules to

The aim of this paper is to study the kinetics of phasereorient and conversely a reorientation of the liquid crystal
separation for two-dimensional liquid crystals under amay induce a velocity fieldoackflow). To have a complete
qguench from an isotropic to a nematic phase. Considerablgicture of the kinetic growth of a phase separating nematic
controversy exists as to whether the ordering violates dyliquid crystal it is crucial to include the effect of these cou-
namical scalind6]. The simplest scaling analysis based onplings.
the assumption of diffusive dynamics for the order parameter Lattice Boltzmann approaches have proved very success-
suggests that any length scale in the system should growil algorithms for investigating phase ordering in binary flu-
with a power law in timet'/? [4]. However, an examination ids. Here we use an extension of the method that models
of the configuration of the order parameter in experiment  liquid crystal hydrodynami¢44,15. The equations of mo-
simulation clearly shows that the late stage ordering pro-tion describing liquid crystal hydrodynamics are complex.
ceeds by defects moving to annihilate. Simple defect arguThere are several derivations broadly in agreement, but dif-
ments that rely on an assumption of a finite constant frictiorfering in the detailed form of some terms. Here we follow the
coefficient for the movement of defects also gt\}@ [4]. A approach of Beris and Edwards who write the equations of
problem arose due to early calculatiofi8—10 which  motion in terms of a tensor order parame@rwhich de-
showed that the friction coefficient diverges logarithmically scribes the orientational distribution function of the mol-
with system size. This brought into question whethertftfe  ecules[16]. This formalism is appropriate here because the
behavior from the simple scaling analysis would be foundmotion of defects is explicitly included. Moreover, both the
Simulations of theXY model[4] and later of tensor models isotropic and nematic phases can be modeled using the same
of liquid crystals[6,7] reinforced this view when they failed formalism, which is necessary if the dynamics of the transi-
to measure theé'? behavior and, in fact, found exponents tion between them is to be followed.
that appeared to be decreasing away from 1/2 at late times The paper is organized as follows. In Sec. Il we summa-
[6]. However, experiments by Pargellis and co-wor8k  rize the hydrodynamic equations of motion for liquid crys-
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tals. The lattice Boltzmann scheme used to model theselastic constants when the order parameter is uniggil
equations is described in Sec. Ill. In Sec. IV we introduce theThis simplification is not expected to affect the scaling be-
correlation function, the correlation length, the energy denhavior.

sity, and the defect separation as the relevant quantities that The order paramete® is not conserved. It evolves ac-
characterize the late time behavior of the phase separatimgrding to a convection-diffusion equatiph6,19-21

system. A review and discussion of previous results is also .

given. The dynamic scaling behavior of the model is inves- (3;+U-V)Q—-S(W,Q)=TH, 2
tigated for systems of linear size=256, and the space of o

the relevant parameters of the model is explored to choosghereu is the bulk fluid velocity and is a collective rota-
the best values for more computatlonally Intensive SImUIa'tional diffusion constant. A generalized form Bfis

tions. In Sec. V a careful estimate of the dynamical expo-

nents is performed for systems of linear size512. Nu- . r
merical results for shallow quenches are presented in Sec. =——, 3
VI. In Sec. VIl we make some concluding remarks. (1-3TrQ*?

where theQ dependence in the denominator enhances reori-
Il. THE HYDRODYNAMIC EQUATIONS OF MOTION entation for well-ordered systerf20]. Note that in previous
studies of the kinetics of phase separation for liquid crystals

There are two major differences between the hydrOdy‘[heQ dependence in the diffusion parameter has always been

namics of simple liquids and that of liquid crystals. First, the
rodlike shape of the molecules means that they are rotated gjeglected and’=1I" assumed. _ .

gradients in the velocity. Second, the equilibrium free energy  The first term on the left-hand side of E@) is the ma-

is more complex than for a simple fluid and this in turn terial derivative describing the usual time dependence of a
increases the complexity of the stress tensor in the Naviequantity advected by a fluid with velocity. This is gener-
Stokes equation for the evolution of the fluid momentum. Inalized by a second term

a general formulation of liquid crystal hydrodynamids],

the continuum equations of motion are written in terms of a S(W,Q)=(D+2)(Q+1/3)+(Q+1/3)(D—2)

tensor order paramet& which is traceless and symmetric —2(Q+1/3)Tr(QW), (4)

and is related to the direction of individual molecur:asby . .
Qup=(m,mz— 38,5 where the angular brackets denote awhere D=(W+W?)/2 and Q=(W-W")/2 are the sym-
coarse-grained averag@Ve shall use Greek indices to rep- Metric part and the anti-symmetric part, respectively, of the
resent Cartesian directions and assume the usual sum oW&!0City gradient tensow,z=dsu, . (W,Q) appears in the
repeated indicesThe advantage of this approach is that it equations of motion because the order parametgr distribution
includes both the isotropic@=0) and the nematic@+ 0) can be both rotated gnd stretch(_ad by flow gradle.nts.
phases and allows an order parameter of variable magnitude 1he term on the right-hand side of E@) describes the
within the latter. Hence it is possible to explore the effect of/€laxation of the order parameter toward the minimum of the
flow on the phase transition between the two states. Morel€€ €nergy in a way analogous to mode(22]. The mo-
over the hydrodynamics of topological defegteint defects lecular f|eIQH that provides the driving motion is related to
in two dimensionsis naturally included in the equations. We the derivative of the free energy by
will study a two-dimensional system with the flow confined ST ST
to thexy plane. However, we will allow the director field to H= —— +(1/3)Tr{ — . 5
the: e. HG s H 13T 5

point in any direction X, y, andz). As such the tensor order Q Q

arameter is always aX33 matrix. - . .
P The equilibriumy properties of the liquid crystal are de- The flow Of. the liquid crystal of density obeys the conti-
scribed by the Landau—de Gennes free energy functionzﬂUIty equation

[17] Ot 94pU,=0 6)

1 y y y and the Navier-Stokes equation

— 3 2 2 32

f_j d r[§<1_§)Qaﬁ_§QaﬁQB7an+Z(QaB) pr
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7
This free energy describes a first-order transition from the "
isotropic to the nematic phase. In general three elastic corwhere; is related to the viscosity an, is the pressure,
stants are needed to fully characterize the nematic gia$e
but we restrict ourselves to a single elastic constanthis P —T— E(VQ)Z ®)
can be shown to be equivalent to having three equal Frank 0mPIT Y '
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_Thg details_of _the stress tensor reflegt the gdditional com- Gi(>2+ éiAt,t+At)—Gi(§,t)
plications of liquid crystal hydrodynamics with respect to

simple fluids. There is a symmetric contribution At - IR .
=5 [Co (X L1GH +Cq (X + ALIHALIGT ) |.

oF
— 13
Tap= _Po5a5_3Haﬁ_ﬂﬁme ) (13

The left-hand side of these equations represents free
streaming with velocityéi, while the right-hand side is a
collision step which allows the distribution to relax toward
equilibrium. f¥ and G are first-order approximations to

Tap= QayHyp~HayQyp- (10 fi(x+eAt,t+At) and G;(x+eAt,t+At), respectively.
They are obtained from Eqé12) and(13) but with f* and
For the symmetric contribution we are using the form de-Gi* set tof; andG; . Discretizing in this way, which is simi-
rived by Doi[20]. This is only quantitatively correct in the |ar to a predictor-corrector scheme, has the advantages that

vicinity of the transition with the general form being slightly |attice viscosity terms are eliminated to second order and that
more compleX16]. We do not expect any qualitative differ- he stability of the scheme is improved.

ences to result from this difference in the regime in whichwe  The collision operators are taken to have the form of a
operate in this paper. single relaxation time Boltzmann equation, together with a
forcing term

and an antisymmetric contribution

lll. A LATTICE BOLTZMANN ALGORITHM FOR LIQUID 1
CRYSTAL HYDRODYNAMICS Cr(xt it =~ ;f[fi(f,t) —FOGLEED 1+ Pt AT},

We now define a lattice Boltzmann algorithm that solves (14
the hydrodynamic equations of motion of a liquid crys&|
(6), and (7). This section may safely be omitted by readers - 1 . eq s
interested in the physical results but not in the details of the Co,(X.L{Gi}) =~ T_G[Gi(xlt)_Gi (xt{Gi}H]
simulations.

Lattice Boltzmann algorithms are defined in terms of a set +M(X,L{G}). (15
of continuous variables, usefully termed partial distribution
functions, which move on a lattice in discrete space and time The form of the equations of motion and thermodynamic
[23]. The simplest lattice Boltzmann algorithm, which de- equilibrium follow from the choice of the moments of the
scribes the Navier-Stokes equations of a simple fluid, is deequilibrium distributionsf{9 and G{9 and the driving terms
fined in terms of a single set of partial distribution functionsp; andM;. f79is constrained by
that sum on each site to give the density. For liquid crystal
hydrodynamics this must be supplemented by a second set, eq_ eq. _
which are tensor variables, and which are related to the ten- 2. fi™=p, EI fi €ia=pUa,
sor order paramete.

We define two distribution functions, the scaleﬁ(@?) and
the symmetric traceless tens@g(x), on each lattice site 2 7815~ Tupt pUalls,

, . .
Eachf,,G; is associated with a lattice vectéir. We choose
a nine-velocity model on a square lattice with velocity vec-where the zeroth and first moments are chosen to impose
tors éi=(i1,0),(0,t1),(i 1,41),(0,0). Physical variables conservation of mass and mqmentum. The second moment
of f€9 controls the symmetric part of the stress tensor,

whereas the moments pf

(16)

are defined as moments of the distribution function

P:Z fi! puazz fieiav QZEI Gi- (11) 2 pi=0, 2 piem=é’ﬁ7'aﬁ, 2 pieiaeip,:O
(17

impose the antisymmetric part of the stress tensor. For the
equilibrium of the order parameter distribution we choose

The distribution functions evolve in a time stég ac-
cording to

fi(X+eiAt,t+At)_fi(X,t) z Gieq:Qa z Gieqeia:Qual
|

:%[Cfi(i’tv{fi})‘Fcfi(i-i- eALt+AL{f* 1],
(12) EI Gieqeiozeiﬁ’: QUaUB . (18)
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This ensures that the order parameter is convected with thehereg should have the forrg(y)~y~N*9 for largey for
flow. Finally, the evolution of the order parameter is mostthe O(N) vector model(Porod’s law [25]. To see how this
conveniently modeled by choosing arises note that, foy=kL.,>1, the structure factor probes
the order parameter at length scales much smaller than the
=y _ separation between defects. Substantial variation of the order
zi Mi=TH(Q)+SW.Q), Z Mi€io= ( EI M‘)u“’ parameter on these length scales happens only in the vicinity
(19 of the defect cores, and is not related to interdefect correla-
tions. This implies that
which ensures that the fluid minimizes its free energy at
equilibrium. S(k,t)~pgef(t)b(k), KLeo>1, (24)
Conditions(16)—(19) can be satisfied as is usual in lattice ] ] ] )
Boltzmann schemes by writing the equilibrium distribution Wherepqe is the density of defects in the system &) is
functions and forcing terms as polynomial expansions in thé function ofk only. If we further assume that the separation
velocity [23]. Taking the continuum limit of Eqs(12) and  Of defects scales as the correlation lenfgth,, so thatpges
(13) and performing a Chapman-Enskog expansion leads t&Lcor(t) "%, wheres is the dimensionality of the defect
the equations of motion of liquid crystal hydrodynamigs, ~ (zero herg then ford=2 scaling implies
(6), and(7) [14].

g(y)~y [drldsl=y=2, (25
IV. PHASE ORDERING KINETICS Zapotocky and collaborators did find te# behavior in the
A. Measures tails [6]. They also noted that the scaling functions appeared

to approach they~* law from above. This effect has been

The kinetics of phase separation in liquid crystals ha%bserved experimentally and it is attributed to interdefect

been examined using simulations by Zapotoekwyl.[6] and correlations
more recently by Fukudg]. The former studied phase sepa- A scaling form also holds for the elastic energy. To see
ration in the diffusive regime while the latter added hydro-,, .
) this note from Eq(1) that

dynamics. In both cases, rather deep quenches were per-
formed and three different quantities considered in order to
make a quantitative analysis of the domain growth. ech df(ﬁany)(ﬁaQﬁny dkk?S(k,t)

The first measure is the scalar correlation function for the

tensorial nematic order parametgrdefined by[6] )
:j dK[KLco (1) 179(KLcor (1)) (26)
TrLQ(0,t)Q(r,t
cir = LA O] 0 | | |
(TrQ?(0,t)) for d=2 where the last line has been obtained by using the

scaling form Eq.(23). The integral can be split into three
where (- - -) denotes averaging over the positioBsThe parts, 0<r<a, a<r<Lgy(t), andL,(t)<r<ow, wherea
correlation function is normalized so th@(0,t)=1. A cor- is a cutoff. Assuming that the result is not dependent on the

relation lengthL .., (t) at timet is defined by cutoff, the first part can be neglected, whereas for the second
contribution using Porod’s law fog and integrating frona
C(Lcor,t)=1/2. (21)  to Lggl(t) gives
Dynamical scaling states that the system is dynamically For*Leor(t) 72IN[ Lo, (t)/al. (27

self-similar in time, except for a change in the length scale. If

dynamical scaling holds, the correlation length will control The last term can be neglected since it should scale roughly
the statistical properties of the system. Plotting the correlaas L_2(t) assuming thag(y) is approximately constant at
tion function as a function of/L.,,(t), the data at different smally. Differentiating Eq.(27),

times should collapse onto a single curve. Moreolegg,(t)

should decay with time as a power law dinFe dinLeo(t) dinFe
dint  dint dinL
L cor(t)~teor, (22 °°f1
Zapotockyet al. [6] obtained an exponenp.,,=0.41 sig- ~ beor(D| —2+ IN[Leor(t)/a])’ (28)

nificantly lower than the value 1/2 suggested by the diffusive
character of the equation of motion for the order parametewhere ¢,,(t) is the exponent from the scaling of the corre-
(2) and by scaling argumenf24]. lation length. We define a new exponent for the characteristic
A second measure is the Fourier transform of the correlagnergy as
tion function, the structure factd®(k,t). The scaling form
for the structure factor il dimensions is 1dinFg beor(t)
) $el(V="5 qint ~ PeorlV ™ 2L (074l
S(K,t) =L o () g(KLcor(t)) (23 (29
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Note the logarithmic corrections to the scaling of the elastic More recently Fukud47] has investigated the effect of
energy. Taking these into account, Zapotoekyal. obtained  the stress-induced flow on the kinetics of the nematic-
reasonable agreement betwegy and ¢.,,, whereas with-  isotropic transition by numerically solving the hydrodynamic
out taking them into account they obtainefl,;=0.325 equations for the tensor order parame&feand the fluid ve-
< peor [6]. locity in d=2. The equations of motion were slightly differ-

A length scale can also be obtained from the averagent from the ones considered here. An older model that con-
separation of topological defects. This separation is found bgiders a corotational derivative rather than an upper
counting the number of defects in the system to obtgjry ~ convective derivativg26] was used. For the purely dissipa-

and then taking tive case Fukuda obtained similar exponents to Zapotocky
et al, for the hydrodynamic case he obtainéd, = ¢qes
Laed(t)=1Npger. (300  =0.43. Note that, in contrast to the case without flai,,

_ = ¢qef, indicating that the dynamical scaling hypothesis is

Zapotockyet al. obtained a valugqe=0.374 for the corre-  confirmed when hydrodynamics is included. However, the
sponding exponent. It is assumed that defect annihilation igajye calculated is still lower than the value 1/2 expected for
the process that controls the growth of the correlation lengthhese systems.

and therefore dynamical scaling impliggo = ¢qer- Zapo-  Most experiments on phase ordering in liquid crystals are
tocky et al. could give no explanation of the discrepancy in jn the three-dimensional regime where the defect line energy
their values and interpreted it as an indication of the viola-cgntrols the dynamics. There are only a limited number of
tion of dynamical scaling. _ . experiments in a two-dimensional geomefi#7,3]. Even in

Indeed, in almost all of the published numerical work onthe experiments it is difficult to reach the asymptotic regime

phase ordering in systems that order via the annihilation ofnq the expected power law tf! for the number of defects
topological defects, it has been found that the exponents afg only obtained for the last decade of tif@l.

less than the value 1/2 expected from dimensional analysis.

A suggestive argument for the origin of this discrepancy has _ ]

been given by Yurkeet al. [5] for the O(2) model. These B. Corrections to scaling and parameter space

authors obtained an approximate equation of motion for an  Qur goal is to ascertain why previous studies have not

isolated defect-antidefect pair by equating the attractive angheasured the expected exponents and then, if possible, to

frictional forces acting on each defect. The attractive forceperform simulations in the asymptotic scaling regime to ob-

was assumed to have the forfy,><—1/L wherelL is the tain precise exponent values. In order to do this we first

separation of the defects. This would seem to be a reasonalffetermine numerically the dependence of the corrections to

assumption as it is well known that the energy of such a paigcaling on the parameters at our disposal. In doing this we

varies as I [17]. The frictional force was taken to d&;,  will see that the difficulty in obtaining the asymptotic values

=y In(R/a) whereR is the “size” of a defecta its core size, of the exponents may have had as much to do with the fine

andv = 3dL/dt its velocity. The “size” is then assumed to scale details of the simulation on the lattice as with the con-

be equal td_. Assigning a defect size df may seem some- straints of lattice size and run times.

what questionable. However, the assumption can be sup- As it seems clear from all previous studies that the phase

ported by a more rigorous argumegntl]. behavior is dominated by the motion §f in the plane, we
Equating the frictional and elastic forces gives an implicitrestrict the order parameter to be of the form

formula for the defect separation as a function of the ttime

before annihilation, Qxx  Quy 0
t 1/2 Q: Qxy ny 0 , (33)
Ldef(t)N |n[|_def(t)/a]_1/2 (31) 0 0 _(QXX+ ny)

The growth in this length scale for increasing times beforen order to speed up the numerics. The quenches that we

annihilation is then assumed to be the same as the growth itonsider are envisaged to start at a high temperature, at

the average separation of defects after a quench. This giveghich the equilibrium phase is the disordered, isotropic

an apparent exponent phase. We take as the initial condition for the lattice Boltz-
mann simulations a configuration representative of this phase
in which theQ,; at each lattice point are random numbers

: (32 uniformly distributed in a small intervdl— &, §1. More pre-
cisely, by writing

1
e >

t
L3 (0)IN[Leed(t)/a]

The argument implies that the failure to meastiféis due to

logarithmic corrections. However, it has been claimédl Qux=A(3 cos¢ cosp—1)/2,
that this is effectively untestable because of the unknown
constant of proportionality in Eq32). One can, however,
measure an effective exponent for the two-defect case and
compare it to that for the average separation after a quench.
Zapotockyet al. obtained a similar valuepy.;=0.375[6]. Qyy=A(3singsing—1)/2, (34

Qxy=3Aco0s¢ sin /2,
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C(r,t)
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3 4
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FIG. 2. Correlation function foy=3.25 and with renormalized
diffusion constant. Inset: unscaled correlation function for times
betweent=159 and 8913. Main figure: correlation function as a
function ofr/L(t) whereL(t) is determined as the length at which

FIG. 1. Schlieren pattertshading and fluid velocity(vectors  the unscaled correlation function crosses 1/2.
associated with the ordering of a liquid crystal after a quench from
the isotropic to the nematic phase. The director in the darkest remalized diffusion constant is shown in Fig. 2. There is a
gions is perpendicular to the director in the lightest regiomith  reasonable collapse of the data when the correlation function
the other shade in betwelerThe shading on the Schlieren pattern js plotted against /L., (t). This is as expected from dy-
has been rendered with only three shades of gray so as not to ofgmical scaling. However, even if a function does appear to
scure the veF:tor field. Disclinations qf strengttl/2 are located at collapse it is very hard to measure the quality of the collapse
the intersection of dark gray and white “brushes.” and hence this provides only a weak test of scaling.

Figure 3 shows the length scale obtained from the corre-
the initial configuration is obtained by assigning, at each lat{ation functionL,, as a function of time for all five data
tice point, a random number in the range 0.02,0.02 for sets. The exponenis.,, , dqet, Pei Obtained by fitting these
the amplitudeA and a random number i, 7] for the  data, as well as similar data for the number of defects and the
phased. distortion energy, to power laws are given in Table I. Al-

To ascertain a rough dependence of the corrections tthough, as there are corrections to scaling, this is not a good
scaling on the various parameters of the system we examineglay of obtaining the exponents, it does allow for a clear
quenches below and close to the spinodal line for several setdmparison between the different parameter sets. A more so-
of parameters values. For this exploration of parameter spagshisticated way of estimating the growth exponents is to ob-
we used a lattice size of 256256 and averaged over only tain an effective exponend(t*) by performing a simple
two to five runs. linear fit to the plots of I. versus Irt (e.g., Fig. 3 for data

Figure 1 shows the Schlieren pattern and associated fluid
flow from a typical run. The shading indicates the orientation
of the director field and the arrows the fluid velocity. The
thing to note in such a diagram is the intersection of light and 541
dark “brushes,” which indicate the location of thel/2 dis-
clinations. It is apparent that the main features of the flow are
the vortices associated with the moving disclinations. The _
interaction of vortices in two-dimensional flow has the same3 10}
form as the interaction of disclinations in the director field so
one does not expect any qualitative changes in the scaling
behavior.

We now compare five sets of data. The first four data sets
are a quench tey=3.25(note that the first-order transition is il
at y=2.7 and that the spinodal is at=3.0). The first is a 10 100 1000 10000

r
baseline run. In the secordis given by Eq.(3) whereas in . ) .

. FIG. 3. Length scale obtained from scaling of correlation func-
th? otherd” is taken to be a (_:0nstant a”?' equal to 1. In thetion as a function of time. The lines are power law fits and the
third we turn off hydrodynamics by relaxing the momentum gy mpos correspond to box;=3.25, baseline; diamondy=3.25,
conservation constraift.e., the second equation {@6)] at  renormalized diffusion constant; filled triangle=3.25, hydrody-
time t=5000. The fourth has a value aften times smaller  namics off; stary=3.25, smallk; hollow triangle,y=3.7 as base-
than the rest. The fifth data set is similar to the first excepline. In this figure(and all otherstimes are multiplied by to make

now the quench is deeper, t0=3.7. them dimensionless and distances are measured in units of the lat-
The correlation function fory=3.25 and with the renor- tice spacing of the simulation.

100 t

20
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TABLE I. Comparison of the exponents obtained by fitting the data from runs on small sy&ems
below Fig. 4 to a power law. The statistical errors0.003 and the systematic errors0.015 (as the end
points of the fit are changed

Run Parameter set Exponents
¢cor ¢def ¢d

Baseline y=3.25T=1, k=0.02 0.42 0.406 0.35

Renorm. diffusion 7,:3_257F:(]__g-|'r Q)2 k=0.02 0.45 0.43 0.365

No hydrodynamics y=3.25,T=1, k=0.02 0.42 0.398 0.345

More localized defects y=3.25,'=1, k=0.002 0.36 0.33 0.27

Deeper quench y=3.7,T =1, k=0.02 0.39 0.36 0.31
in the intervalt_,,t_.1,....t%, ... t—1,th. M=8 is  To see this we compare results for the baseline run with
used in the fits presented here. =0.02 to the run with a value ok ten times smaller £

From these preliminary runs with=256 we can make =0.002). The effective exponent extracted from the correla-

the following observations. tion function is shown in Fig. 5. There are a few important

the sense that the exponents are closer to the expect@@!t @ monotonic function of time: it reaches a maximum
asymptotic value of 1/2. However this turns out to be mostlyvalue at a given time and then it decreases as time is further
lation length exponent as a function of time in Fig. 4 for thetime at which it happens is much larger than for the run with
first two data sets in Table I. We see that for the baseline dat@ore localized defects. Note that this effect has also been
set the exponent first decreases and then increases with tifilServed in previous simulatiori§] and interpreted as the

whereas with the renormalized diffusion constéinthe ex- onset of freezing in the dynamics, due mainly to the finite

; . ; . o size of the system simulated. However, the fact that the effect
ponent mmedlately starts mcreasmg'Wlth time tqward theIS stronger for smaller values @&f suggests instead a lattice
asymptotic value. Thus, we are effectively accessing Iongecriiscretization effect

times with the renormalized diffusion constant. This is rea- As an obvious length scale in this problem is the size of a

sonable because the initial ordering in the system, where th&efect corea it is tempting to takex as small as possible to

order parameter saturates away from the defect cores, is a - . . .
e minimize this scale. However, once a defect core is of the
diffusive process.

(2) Hydrodynamics appears to speed the ordering Verorder of a lattice spacing, it becomes energetically advanta-

slightly, but not by a significant amount. The crucial test her eous for_ a d(_efgcfc to be ce_nter(—;-d in_ a plaquettg of the lattice
i the 7run denoted in Fia. 3 by filled Itrian les where at 28> this will minimize the distortion in the amplitude of the
Igsiven time step = SOOO)gWe h};ve explicitl?/ switched off order parameter that is actually realized on the lattice, as
. o Lo o shown in Fig. 6. This creates an additional potential which
the hydrodynamics by randomizing the velocity dlrectlonscan trap the defect. The height of this potential is a decreas-
after each collision step. One can see in Fig. 3 that no sig- ’

nificant change occurs with respect to the run in which the 9 function of« as, if the amplitude distortion caused by a

hydrodynamics is fully taken into account. This conclusiondefGCt is spread over many sites, the defect will be less sen-

. ; -~ sitive to exactly where it is centered.
agrees with previous results by Fukudd even though his : : : , ,
; X . This effect occurs at later times in the simulation because
formulation of the model is somewhat different from ours.
(3) Reducingx reduces the size of the defect cores and
we find that changing has a significant effect on the results.

0.55
05

0.55 0.45
0.5 2 04 %W
~ 045

%M“M 0.35
0.4 %w%%%

)

deor(t

3 0.3
< 0.35 0.25
03
025 -35 -3 -25 —gk -15 -1
log,n(1/TT)
-3 -25 -2
logyo (1/T1) FIG. 5. Effective exponent for the growth of the correlation

length as a function of time. Empty triangle,=3.25, baseline;

FIG. 4. Effective exponent for the growth of the correlation filled triangle, y=3.25, «=1/10 of the baseline value. The tinte

length as a function of time. Empty triangle=3.25, baseline; has been multiplied by 1/10.e., time is scaled by %)) for the
filled triangle, y=3.25, renormalized diffusion constant. small k case.
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* %% Ld 0.55
0.3} *ok L& ] 0.5
i it ~ 0.45
0.2 ** “ T 04
- : o35
0.1 :
< i T 0.3
! | 0.25
! i /
I || —3 —25 —2
0.1 ﬁ ',4‘\‘ log,(1/T 1)
9 9
oo | memm——— »'n i - FIG. 7. Effective exponent for the growth of the correlation
0 50 lJOO 150 200 length as a function of time. Triangle;=3.25, baseline; boxy
po /K T

=3.7, baseline.

FIG. 6. Two largest eigenvalues @ along a cut joining the .
center of two*1/2 defects moving to annihilate each other. The using a renormalized diffusion constakitand values of«x
squares and diamonds are for the case with0.02 and the stars big enough to avoid pinning effects better scaling behavior is
and triangles fork=0.5. The dips are an indication of the lattice gchieved in less time. Using this knowledge we now simu-
pinning potential. The abscissa is scaled by the lengtfip, to  |ate bigger systems and average over more starting configu-
make it dimensionles@ll other parameters are the same rations to obtain more precise results for the dynamical criti-
. ) ] ~_cal exponents of the model.
interdefect interactions decrease as the defect spacing in- we focus on the scaling behavior of the correlation func-
ances the defect-defect interactions motion will stop. |“deeobhase separating systems of linear size512. Averages

gvenlt)]((a_fore thlisdtime, thehlatgc? pinnin%_wrilll Ca‘iseba”dadqi\/vere taken over 20 initial configurations. Quenches were run
tional frictional drag on the defects, which could be em_for v=23.25 andy=3.0. In both casex=0.3 andl'=1/(1

mental in trying to fit to theory. Thus we see that takiag 3 N
small to try to achieve longer length scales appears to 2 '_I'rQ )" : .
Figure 8 shows the time evolution of the length scale

gsg%gsen done in almost all previous woika trap better obtained from the correlation function for the two data sets.
' ote that at late times the dafan the log-log plot display a

Second, as can be seen from Fig. 5 , if the time is scale ear behavior with slope close to 1/2. A simple linear fit of
by « the effective exponent for the baseline case appears e data witht=t,— 2239 gives

continue on the same curve as for smallerAt first this
seems surprising since one might expect time to scale with

the diffusion constant, but not necessarily withTo see why beor=0.50+0.01 (36)

it occurs one can substitute a form for the director of a

uniaxial nematic away from the defect corep [Of ¥=3.25 and

=(cos#, sind), into Eq.(2). Ignoring the hydrodynamic flow

one obtains a diffusion equation for $eor=0.48+0.02 (37
3,0=D V20, (350  for y=3.00. The errors were obtained by varyindetween

- 502 and 5012. This systematic error was much more signifi-
whereD ,= I, confirming that the relevant diffusion con- cant than statistical errors evaluated from jHestatistics of

stant is proportional to both and « [15,11]. the finear fit.

(4) Finally, the data for deeper quenches show an expo-
nent further from 1/2. This is also due to the pinning poten-
tial described above. As can be seen from the effective ex-
ponents shown in Fig. 7 the freezing happens at an earlier
time for the deeper quench. This is not surprising as defects
are more localized further from the transition and hence the
lattice pinning potential will be greater.

LCOI’ (t)

V. ASYMPTOTIC RESULTS: CRITICAL EXPONENTS

. _ _ o 10 100 1000 10000
In the previous section we examined the kinetics of phase It

ordering in a system of linear sidze=256 averaging over
only a few initial configurations. This allowed us to explore
in a more systematic way the space of the paramétersy,

«,I') relevant to the kinetics. In particular, we found that by angle,y=3.00.

FIG. 8. Length scale obtained from the correlation function as a
function of time. The line is a guide to the eye and has slope 1/2.
The symbols correspond to empty triangles 3.25, and filled tri-
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FIG. 9. Effective exponent for the growth of the correlation G frecti for th h of the elasti
length as a function of time. Filled triangle,=3.00; empty tri- FIG. 11. (a) Effective e.xponent_ ort © growth of the elastic
angle, y=3.25. energy length as a function of time triangle=3.00; box, y

' =3.25. (b) Effective exponent for the correlation lengttilled tri-

As we have argued in the previous section a better quarﬁngle’ and the growth of the elastic energy corrected for the loga-

tity to check is the effective exponei(t*) as a function of rithmic scaling of Eq.(29) (empty triangl¢.

A " : :
fitting time t*. In Fig. 9 we show the effective exponent for ing as in Eq.(29), we can bring the exponent into agreement

. . . . .
the correlation Iengtfzﬁcqr(t )asa funct'|on of inverse time. with that obtained from the correlation function, as shown in
Note that the asymptotic value of 1/2 is clearly reached for,

the last decade in time. As far as we know this is the firstFIg' 11(b). . .
. : ) . By extrapolating the effective exponents at highvalues
time that strong evidence has been obtained for the conjec- .
: . we obtain,
tured 1/2 dynamical exponent for a phase separating nematic
liquid crystal.
Similar plots for the effective exponent for the number of

defectspyo1(t*) are shown in Fig. 10. By looking at the high

$e=0.47+0.03 for y=3.25,

t* behavior we obtain ¢e|:0.50'_" 0.03 for 7:3.00. (39)
$4er=0.47+0.03 for y=3.25, VI. SHALLOW QUENCHES
$aer=0.48+0.03 for y=3.00, (38) So far, we have examined the late stage kinetics of the

orientational ordering, long after the amplitude has ordered.

where the errors have been estimated from the fluctuations i this regime, the ordering has shown dynamics consistent
the effective exponents from a moving average with fewewith that expected for a diffusivY model. It is also inter-
points (four in this casg Again, we see that the asymptotic esting to examine the early stage dynamics and shallower
value of the exponent is consistent with 1/2. guenches where one may observe an interaction between the

Finally, Fig. 1Xa) shows the exponent obtained from the two symmetries of the problefine., those of the scalar order
elastic energyp. (t*) . In this case a simple linear fit pro- parameter and the essentiay(2) symmetry of the orienta-
duces an asymptotic value smaller than 1/20(4 in the tional ordet.
plot). This is mainly due to the logarithmic corrections to the  First we examine what is naively expected for the ampli-
scaling of the elastic energyeq. (27)] which depress the tude ordering dynamics. Assuming that the orientational de-
effective growth exponent for the characteristic energygrees of freedom are completely ordered the free energy can
length with respect to the correlation length expondfg.  be written in terms of just the amplitude of the order param-
(29)]. Indeed, by adding the logarithmic corrections to scal-eterq [20],

! 1 Yo ¥ 3. Y 4
os J-‘—2<1 3)q g4 +6q. (40
£ 06 This is shown as the solid curves in Fig. 12 for the cages
‘;; =2.7 (phase transition poiptand y=3.0 (spinodal line,
£ 04 % where the barrier between the isotropic and nematic states
0.2 vanisheg One expects the presence of a free energy barrier
between the isotropic and nematic states to affect the phase

35 =3 25 ordering dynamics. In the presence of a barrier q.finite region
log,, (1/T't") of the nemat|c_phase must be nucleated to initiate growth.
Beyond the spinodalwhich occurs aty=3.0) the system
FIG. 10. Effective exponent for the growth of the defect sepa-Will order spontaneously by spinodal decomposition
ration length as a function of time. Filled trianglg=3.00; empty  throughout space. If we artificially orient the director field
triangle, y=3.25. before quenching, this is indeed what is observed.
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FIG. 12. Free energyX10°) versus magnitude of the order Tt

parametenq for y=2.7 (left) and y= 3.0 (right). Solid lines corre-
spond to the assumption of complete orientational order and dashed FIG. 14. Number of defects versus time for a quenchyto
lines correspond to the spatially averaged free energy for different 3.05.
values of the defect separati@and 12 in left figure and 2 in right
figure). metastable but the global free energy minimungzat0 may
not be a minimum at zero time. This contribution to the free
However, in a normal quench where the director is notenergy is included in Fig. 12 for different values lof+.
oriented, one observes somewhat different behavior. In par- The domain growth in the nucleated case is now easily
ticular, there is a region where one might expect spontaneoughderstood. Why there is eventually ordering with no nucle-
ordering[3.0< y< ys(k,L)] which in fact exhibits a two- ation sites still requires some explanation. Equatidd)
stage growth process in the absence of a nucleating site, agives the average free energy contribution from the orienta-
domain growth from a nucleating sitas opposed to spin- tional order. However, locally there are regions where there
odal decompositionif one is provided. is higher orientational order so that some gain in free energy
Figure 13 shows the amplitude as a function of time forcan be made by increasimgin these regions. These regions
y=3.05 for a system which is initially disordered and in are still not large enough to gain sufficiently from this to pay
which we have not supplied any strong nucleating sitesfor the cost of an interface between fully ordered and disor-
There are clearly two different stages of growth. In the firstdered states so the elastic energy suppresses the grogth in
stage the amplitude grows very slowly for a long time. Thenkeeping its typical value very small. However, as we have
the system abruptly orders, very quickly reaching the equialready pointed out in Eq35) the diffusion constant for the
librium value. If instead we supply the system with nucleat-orientational ordering is independent gfas long agj>0.
ing sites at the beginning of the simulation it orders muchHence the orientational ordering can proce¢gee, for in-
more quickly, with domains growing from the nucleating stance, the number of defects as a function of time shown in
sites. These observations are consistent with the presence fofJ. 14) As the orientation proceedkge grows and even-
a free energy barrier that decays with time. tually the free energy barrier is small enough that the system
The free energy barrier can be identified as resulting fronfan form a sufficiently large region of the amplitude ordered
the free energy of the orientational order. There is a timePhase to nucleate growth. Once such a region is formed the
dependent quadratic term in the free energy due to the digmplitude ordering can proceed rapidly.
tortion. The distortion energy is proportional kg)> [see Eq.
(1)] so that one has an effective term VII. SUMMARY AND DISCUSSION

2 -2 To summarize, we have used a lattice Boltzmann algo-
Fa7xGLged ) “I[Lgedt)/al, @Y fithm to investigate the phase ordering of liquid crystals
quenched from the isotropic to the nematic phase. The sys-
tem is described by the Beris-Edwards equations of liquid
crystal hydrodynamics. These are written in terms of a tensor
order parameter which means that the dynamics of topologi-

using Eq.(27) with Lge(t) being the separation between
defects. As a result, not only does the stateat3.0 remain

0.3> Anaaa) cal defects that drives the phase ordering appears naturally in

0.3 the simulations. The liquid crystal moves toward an equilib-
0.25 rium described by the Landau—de Gennes free energy.

0.2 The flexibility of the numerical scheme allows an inves-
%0 15 tigation into how the ordering process is affected by the
model parameters. In particular, we find that if the length

0.1 scale defined by the size of the topological defects is taken to

0.05 be too short the cores are pinned by the lattice as the simu-
0lasmmssmsssimssssisisssasisiiisniains® | lation proceeds giving an incorrect value for the growth ex-
! 1.5 2 logifg 3 3.5 ponent. This is likely to have been the problem faced by

other authors who consistently obtained a value less than the
FIG. 13. Amplitudeq versus time for a quench tp=3.05. The ~ 1/2 expected from scaling arguments.
initial fractional noise oy (~10%) is very small and cannot cause ~ Averaging over 20 runs on a lattice of linear size 512 we
ordering by nucleation and growth. obtained ¢.,,=0.49t0.02, ¢ =0.485:0.03, and ¢yes
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=0.475:0.03. The value forp, was fitted using logarith- the flow vortices set up by the moving defects have the same
mic corrections. Hydrodynamic flow speeds up the orderindogarithmic form as the defect-defect interactions them-
slightly but does not change the scaling behavior. This iselves. Thus theoretical and numerical results are now in
reasonable because, in two dimensions, interactions betwe@heasing agreement.
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