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Phase ordering in nematic liquid crystals
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We study the kinetics of the nematic-isotropic transition in a two-dimensional liquid crystal by using a lattice
Boltzmann scheme that couples the tensor order parameter and the flow consistently. Unlike in previous
studies, we find that the time dependences of the correlation function, energy density, and number of topologi-
cal defects obey dynamic scaling laws with growth exponents that, within the numerical uncertainties, agree
with the value 1/2 expected from simple dimensional analysis. We find that these values are not altered by the
hydrodynamic flow. In addition, by examining shallow quenches, we find that the presence of orientational
disorder can inhibit amplitude ordering.
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I. INTRODUCTION

The phase ordering kinetics of liquid crystal systems
dergoing nematic-isotropic transitions has attracted consi
able experimental@1–3# and theoretical@4–7# interest. One
of the reasons is that nematic liquid crystals provide an
perimentally accessible system with continuous symme
that, unlike systems with discrete symmetry, can disp
stable topological defects. During phase ordering these
fects interact and annihilate and it is believed that many
the universal properties of the late stage kinetic growth
be explained in terms of the defect dynamics. This prope
is also shared by the well studiedO(N) model. However,
here the continuous symmetry belongs to a different hom
topy class@the O(N) model lacks the inversion symmetr
present in the director field of nematic liquid crystals#. It is
not yet completely clear if such a difference in the symme
can modify the ordering dynamics of the nematic liquid cry
tal.

The aim of this paper is to study the kinetics of pha
separation for two-dimensional liquid crystals under
quench from an isotropic to a nematic phase. Consider
controversy exists as to whether the ordering violates
namical scaling@6#. The simplest scaling analysis based
the assumption of diffusive dynamics for the order parame
suggests that any length scale in the system should g
with a power law in timet1/2 @4#. However, an examination
of the configuration of the order parameter in experiment~or
simulation! clearly shows that the late stage ordering p
ceeds by defects moving to annihilate. Simple defect ar
ments that rely on an assumption of a finite constant frict
coefficient for the movement of defects also givet1/2 @4#. A
problem arose due to early calculations@8–10# which
showed that the friction coefficient diverges logarithmica
with system size. This brought into question whether thet1/2

behavior from the simple scaling analysis would be fou
Simulations of theXY model @4# and later of tensor model
of liquid crystals@6,7# reinforced this view when they failed
to measure thet1/2 behavior and, in fact, found exponen
that appeared to be decreasing away from 1/2 at late ti
@6#. However, experiments by Pargellis and co-workers@3#
1063-651X/2001/64~2!/021701~11!/$20.00 64 0217
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found behavior consistent with thet1/2 power law. In addi-
tion, their simulation of theXY model with very large am-
plitude noise~considerably larger than that found experime
tally! agreed with thet1/2 power law. A later more rigorous
calculation of the friction coefficient for defect dynamic
showed that it does not diverge with system size, but o
with vanishing defect velocity@11#. This suggests that i
should be possible to measure thet1/2 behavior in a simula-
tion.

Another important issue that remains essentially un
plored is the extent to which the presence of hydrodyna
modes coupled to the nematic order parameter can affec
late stage kinetic growth. It is well known that hydrodynam
interactions can crucially influence phase transition kinet
for example, in simple binary fluid mixtures and in ga
liquid systems@12,13#. In liquid crystals the coupling be
tween the local molecular orientation and the velocity fie
influences the dynamics of the liquid crystal in a complica
manner. For example, shear flow will cause the molecule
reorient and conversely a reorientation of the liquid crys
may induce a velocity field~backflow!. To have a complete
picture of the kinetic growth of a phase separating nem
liquid crystal it is crucial to include the effect of these co
plings.

Lattice Boltzmann approaches have proved very succ
ful algorithms for investigating phase ordering in binary fl
ids. Here we use an extension of the method that mod
liquid crystal hydrodynamics@14,15#. The equations of mo-
tion describing liquid crystal hydrodynamics are comple
There are several derivations broadly in agreement, but
fering in the detailed form of some terms. Here we follow t
approach of Beris and Edwards who write the equations
motion in terms of a tensor order parameterQ which de-
scribes the orientational distribution function of the mo
ecules@16#. This formalism is appropriate here because
motion of defects is explicitly included. Moreover, both th
isotropic and nematic phases can be modeled using the s
formalism, which is necessary if the dynamics of the tran
tion between them is to be followed.

The paper is organized as follows. In Sec. II we summ
rize the hydrodynamic equations of motion for liquid cry
©2001 The American Physical Society01-1
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tals. The lattice Boltzmann scheme used to model th
equations is described in Sec. III. In Sec. IV we introduce
correlation function, the correlation length, the energy d
sity, and the defect separation as the relevant quantities
characterize the late time behavior of the phase separa
system. A review and discussion of previous results is a
given. The dynamic scaling behavior of the model is inv
tigated for systems of linear sizeL5256, and the space o
the relevant parameters of the model is explored to cho
the best values for more computationally intensive simu
tions. In Sec. V a careful estimate of the dynamical ex
nents is performed for systems of linear sizeL5512. Nu-
merical results for shallow quenches are presented in
VI. In Sec. VII we make some concluding remarks.

II. THE HYDRODYNAMIC EQUATIONS OF MOTION

There are two major differences between the hydro
namics of simple liquids and that of liquid crystals. First, t
rodlike shape of the molecules means that they are rotate
gradients in the velocity. Second, the equilibrium free ene
is more complex than for a simple fluid and this in tu
increases the complexity of the stress tensor in the Nav
Stokes equation for the evolution of the fluid momentum.
a general formulation of liquid crystal hydrodynamics@16#,
the continuum equations of motion are written in terms o
tensor order parameterQ which is traceless and symmetr

and is related to the direction of individual moleculesm̂W by
Qab5^m̂am̂b2 1

3 dab& where the angular brackets denote
coarse-grained average.~We shall use Greek indices to rep
resent Cartesian directions and assume the usual sum
repeated indices.! The advantage of this approach is that
includes both the isotropic (Q50) and the nematic (QÞ0)
phases and allows an order parameter of variable magni
within the latter. Hence it is possible to explore the effect
flow on the phase transition between the two states. Mo
over the hydrodynamics of topological defects~point defects
in two dimensions! is naturally included in the equations. W
will study a two-dimensional system with the flow confine
to thexy plane. However, we will allow the director field t
point in any direction (x, y, andz). As such the tensor orde
parameter is always a 333 matrix.

The equilibrium properties of the liquid crystal are d
scribed by the Landau–de Gennes free energy functio
@17#

F5E d3r H 1

2 S 12
g

3DQab
2 2

g

3
QabQbgQga1

g

4
~Qab

2 !2

1
k

2
~]aQbl!2J . ~1!

This free energy describes a first-order transition from
isotropic to the nematic phase. In general three elastic c
stants are needed to fully characterize the nematic phase@17#
but we restrict ourselves to a single elastic constantk. This
can be shown to be equivalent to having three equal Fr
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elastic constants when the order parameter is uniaxial@18#.
This simplification is not expected to affect the scaling b
havior.

The order parameterQ is not conserved. It evolves ac
cording to a convection-diffusion equation@16,19–21#

~] t1uW •“ !Q2S~W,Q!5ḠH, ~2!

whereuW is the bulk fluid velocity andḠ is a collective rota-

tional diffusion constant. A generalized form ofḠ is

Ḡ5
G

~12 3
2 Tr Q2!2

, ~3!

where theQ dependence in the denominator enhances re
entation for well-ordered systems@20#. Note that in previous
studies of the kinetics of phase separation for liquid crys
theQ dependence in the diffusion parameter has always b

neglected andḠ5G assumed.
The first term on the left-hand side of Eq.~2! is the ma-

terial derivative describing the usual time dependence o
quantity advected by a fluid with velocityuW . This is gener-
alized by a second term

S~W,Q!5~D1V!~Q1I /3!1~Q1I /3!~D2V!

22~Q1I /3!Tr~QW!, ~4!

where D5(W1WT)/2 and V5(W2WT)/2 are the sym-
metric part and the anti-symmetric part, respectively, of
velocity gradient tensorWab5]bua . S(W,Q) appears in the
equations of motion because the order parameter distribu
can be both rotated and stretched by flow gradients.

The term on the right-hand side of Eq.~2! describes the
relaxation of the order parameter toward the minimum of
free energy in a way analogous to model A@22#. The mo-
lecular fieldH that provides the driving motion is related t
the derivative of the free energy by

H52
dF
dQ

1~ I /3!TrH dF
dQJ . ~5!

The flow of the liquid crystal of densityr obeys the conti-
nuity equation

] tr1]arua50 ~6!

and the Navier-Stokes equation

r]tua1rub]bua5]btab1]bsab1
rt f

3

3]b@~123]rP0!dab]gug1]aub1]bua#

~7!

wheret f is related to the viscosity andP0 is the pressure,

P05rT2
k

2
~“Q!2. ~8!
1-2
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The details of the stress tensor reflect the additional c
plications of liquid crystal hydrodynamics with respect
simple fluids. There is a symmetric contribution

sab52P0dab23Hab2]bQgn

dF
d]aQgn

~9!

and an antisymmetric contribution

tab5QagHgb2HagQgb . ~10!

For the symmetric contribution we are using the form d
rived by Doi @20#. This is only quantitatively correct in the
vicinity of the transition with the general form being slight
more complex@16#. We do not expect any qualitative diffe
ences to result from this difference in the regime in which
operate in this paper.

III. A LATTICE BOLTZMANN ALGORITHM FOR LIQUID
CRYSTAL HYDRODYNAMICS

We now define a lattice Boltzmann algorithm that solv
the hydrodynamic equations of motion of a liquid crystal~2!,
~6!, and ~7!. This section may safely be omitted by reade
interested in the physical results but not in the details of
simulations.

Lattice Boltzmann algorithms are defined in terms of a
of continuous variables, usefully termed partial distributi
functions, which move on a lattice in discrete space and t
@23#. The simplest lattice Boltzmann algorithm, which d
scribes the Navier-Stokes equations of a simple fluid, is
fined in terms of a single set of partial distribution functio
that sum on each site to give the density. For liquid crys
hydrodynamics this must be supplemented by a second
which are tensor variables, and which are related to the
sor order parameterQ.

We define two distribution functions, the scalarsf i(xW ) and
the symmetric traceless tensorsGi(xW ), on each lattice sitexW .
Each f i ,Gi is associated with a lattice vectoreW i . We choose
a nine-velocity model on a square lattice with velocity ve
tors eW i5(61,0),(0,61),(61,61),(0,0). Physical variables
are defined as moments of the distribution function

r5(
i

f i , rua5(
i

f ieia , Q5(
i

Gi . ~11!

The distribution functions evolve in a time stepDt ac-
cording to

f i~xW1eW iDt,t1Dt !2 f i~xW ,t !

5
Dt

2
@Cf i

~xW ,t,$ f i%!1Cf i
~xW1eW iDt,t1Dt,$ f i* %!#,

~12!
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Gi~xW1eW iDt,t1Dt !2Gi~xW ,t !

5
Dt

2
@CGi

~xW ,t,$Gi%!1CGi
~xW1eW iDt,t1Dt,$Gi* %!#.

~13!

The left-hand side of these equations represents
streaming with velocityeW i , while the right-hand side is a
collision step which allows the distribution to relax towa
equilibrium. f i* and Gi* are first-order approximations t

f i(xW1eW iDt,t1Dt) and Gi(xW1eW iDt,t1Dt), respectively.
They are obtained from Eqs.~12! and ~13! but with f i* and
Gi* set tof i andGi . Discretizing in this way, which is simi-
lar to a predictor-corrector scheme, has the advantages
lattice viscosity terms are eliminated to second order and
the stability of the scheme is improved.

The collision operators are taken to have the form o
single relaxation time Boltzmann equation, together with
forcing term

Cf i
~xW ,t,$ f i%!52

1

t f
@ f i~xW ,t !2 f i

eq~xW ,t,$ f i%!#1pi~xW ,t,$ f i%!,

~14!

CGi
~xW ,t,$Gi%!52

1

tG
@Gi~xW ,t !2Gi

eq~xW ,t,$Gi%!#

1M i~xW ,t,$Gi%!. ~15!

The form of the equations of motion and thermodynam
equilibrium follow from the choice of the moments of th
equilibrium distributionsf i

eq and Gi
eq and the driving terms

pi andM i . f i
eq is constrained by

(
i

f i
eq5r, (

i
f i

eqeia5rua ,

(
i

f i
eqeiaeib52sab1ruaub , ~16!

where the zeroth and first moments are chosen to imp
conservation of mass and momentum. The second mom
of f eq controls the symmetric part of the stress tens
whereas the moments ofpi

(
i

pi50, (
i

pieia5]btab , (
i

pieiaeib50

~17!

impose the antisymmetric part of the stress tensor. For
equilibrium of the order parameter distribution we choose

(
i

Gi
eq5Q, (

i
Gi

eqeia5Qua ,

(
i

Gi
eqeiaeib5Quaub . ~18!
1-3
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This ensures that the order parameter is convected with
flow. Finally, the evolution of the order parameter is mo
conveniently modeled by choosing

(
i

M i5ḠH~Q!1S~W,Q!, (
i

M ieia5S (
i

M i Dua ,

~19!

which ensures that the fluid minimizes its free energy
equilibrium.

Conditions~16!–~19! can be satisfied as is usual in lattic
Boltzmann schemes by writing the equilibrium distributio
functions and forcing terms as polynomial expansions in
velocity @23#. Taking the continuum limit of Eqs.~12! and
~13! and performing a Chapman-Enskog expansion lead
the equations of motion of liquid crystal hydrodynamics~2!,
~6!, and~7! @14#.

IV. PHASE ORDERING KINETICS

A. Measures

The kinetics of phase separation in liquid crystals h
been examined using simulations by Zapotockyet al. @6# and
more recently by Fukuda@7#. The former studied phase sep
ration in the diffusive regime while the latter added hydr
dynamics. In both cases, rather deep quenches were
formed and three different quantities considered in orde
make a quantitative analysis of the domain growth.

The first measure is the scalar correlation function for
tensorial nematic order parameterQ defined by@6#

C~r ,t !5
^Tr@Q~0,t !Q~r ,t !#&

^Tr Q2~0,t !&
, ~20!

where ^•••& denotes averaging over the positions0. The
correlation function is normalized so thatC(0,t)51. A cor-
relation lengthLcor(t) at time t is defined by

C~Lcor ,t !51/2. ~21!

Dynamical scaling states that the system is dynamic
self-similar in time, except for a change in the length scale
dynamical scaling holds, the correlation length will contr
the statistical properties of the system. Plotting the corre
tion function as a function ofr /Lcor(t), the data at different
times should collapse onto a single curve. Moreover,Lcor(t)
should decay with time as a power law

Lcor~ t !;tfcor. ~22!

Zapotockyet al. @6# obtained an exponentfcor50.41 sig-
nificantly lower than the value 1/2 suggested by the diffus
character of the equation of motion for the order parame
~2! and by scaling arguments@24#.

A second measure is the Fourier transform of the corr
tion function, the structure factorS(k,t). The scaling form
for the structure factor ind dimensions is

S~k,t !5Lcor
d ~ t !g„kLcor~ t !… ~23!
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whereg should have the formg(y);y2(N1d) for largey for
the O(N) vector model~Porod’s law! @25#. To see how this
arises note that, fory5kLcor@1, the structure factor probe
the order parameter at length scales much smaller than
separation between defects. Substantial variation of the o
parameter on these length scales happens only in the vic
of the defect cores, and is not related to interdefect corr
tions. This implies that

S~k,t !;rde f~ t !b~k!, kLcor@1, ~24!

whererde f is the density of defects in the system andb(k) is
a function ofk only. If we further assume that the separati
of defects scales as the correlation lengthLcor , so thatrde f
}Lcor(t)

2(d2s), wheres is the dimensionality of the defec
~zero here!, then ford52 scaling implies

g~y!;y2[d1(d2s)]5y24. ~25!

Zapotocky and collaborators did find they24 behavior in the
tails @6#. They also noted that the scaling functions appea
to approach they24 law from above. This effect has bee
observed experimentally and it is attributed to interdef
correlations.

A scaling form also holds for the elastic energy. To s
this note from Eq.~1! that

Fel}E dr ~]aQbg!~]aQbg!5E dkk2S~k,t !

5E dk@kLcor~ t !#2g„kLcor~ t !… ~26!

for d52 where the last line has been obtained by using
scaling form Eq.~23!. The integral can be split into thre
parts, 0,r ,a, a,r ,Lcor(t), andLcor(t),r ,`, wherea
is a cutoff. Assuming that the result is not dependent on
cutoff, the first part can be neglected, whereas for the sec
contribution using Porod’s law forg and integrating froma
to Lcor(t) gives

Fel}Lcor~ t !22 ln@Lcor~ t !/a#. ~27!

The last term can be neglected since it should scale rou
as Lcor

22(t) assuming thatg(y) is approximately constant a
small y. Differentiating Eq.~27!,

d ln Fel

d ln t
5

d ln Lcor~ t !

d ln t

d ln Fel

d ln Lcor

;fcor~ t !S 221
1

ln@Lcor~ t !/a# D , ~28!

wherefcor(t) is the exponent from the scaling of the corr
lation length. We define a new exponent for the characteri
energy as

fel~ t !52
1

2

d ln Fel

d ln t
;fcor~ t !2

fcor~ t !

2 ln@Lcor~ t !/a#
.

~29!
1-4
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PHASE ORDERING IN NEMATIC LIQUID CRYSTALS PHYSICAL REVIEW E64 021701
Note the logarithmic corrections to the scaling of the elas
energy. Taking these into account, Zapotockyet al. obtained
reasonable agreement betweenfel andfcor , whereas with-
out taking them into account they obtainedfel50.325
,fcor @6#.

A length scale can also be obtained from the aver
separation of topological defects. This separation is found
counting the number of defects in the system to obtainrde f
and then taking

Lde f~ t !51/Arde f. ~30!

Zapotockyet al. obtained a valuefde f50.374 for the corre-
sponding exponent. It is assumed that defect annihilatio
the process that controls the growth of the correlation len
and therefore dynamical scaling impliesfcor5fde f . Zapo-
tocky et al. could give no explanation of the discrepancy
their values and interpreted it as an indication of the vio
tion of dynamical scaling.

Indeed, in almost all of the published numerical work
phase ordering in systems that order via the annihilation
topological defects, it has been found that the exponents
less than the value 1/2 expected from dimensional analy
A suggestive argument for the origin of this discrepancy
been given by Yurkeet al. @5# for the O(2) model. These
authors obtained an approximate equation of motion for
isolated defect-antidefect pair by equating the attractive
frictional forces acting on each defect. The attractive fo
was assumed to have the formFat}21/L where L is the
separation of the defects. This would seem to be a reason
assumption as it is well known that the energy of such a p
varies as lnL @17#. The frictional force was taken to beF f r
}v ln(R/a) whereR is the ‘‘size’’ of a defect,a its core size,
and v5 1

2 dL/dt its velocity. The ‘‘size’’ is then assumed t
be equal toL. Assigning a defect size ofL may seem some
what questionable. However, the assumption can be
ported by a more rigorous argument@11#.

Equating the frictional and elastic forces gives an impli
formula for the defect separation as a function of the timt
before annihilation,

Lde f~ t !;F t

ln@Lde f~ t !/a#21/2G
1/2

. ~31!

The growth in this length scale for increasing times bef
annihilation is then assumed to be the same as the grow
the average separation of defects after a quench. This g
an apparent exponent

fde f}
1

2 F t

Lde f
2 ~ t !ln@Lde f~ t !/a#

G . ~32!

The argument implies that the failure to measuret1/2 is due to
logarithmic corrections. However, it has been claimed@6#
that this is effectively untestable because of the unkno
constant of proportionality in Eq.~32!. One can, however
measure an effective exponent for the two-defect case
compare it to that for the average separation after a que
Zapotockyet al. obtained a similar value,fde f50.375@6#.
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More recently Fukuda@7# has investigated the effect o
the stress-induced flow on the kinetics of the nema
isotropic transition by numerically solving the hydrodynam
equations for the tensor order parameterQ and the fluid ve-
locity in d52. The equations of motion were slightly diffe
ent from the ones considered here. An older model that c
siders a corotational derivative rather than an up
convective derivative@26# was used. For the purely dissipa
tive case Fukuda obtained similar exponents to Zapoto
et al.; for the hydrodynamic case he obtainedfcor.fde f
50.43. Note that, in contrast to the case without flow,fcor
.fde f , indicating that the dynamical scaling hypothesis
confirmed when hydrodynamics is included. However,
value calculated is still lower than the value 1/2 expected
these systems.

Most experiments on phase ordering in liquid crystals
in the three-dimensional regime where the defect line ene
controls the dynamics. There are only a limited number
experiments in a two-dimensional geometry@27,3#. Even in
the experiments it is difficult to reach the asymptotic regim
and the expected power law oft21 for the number of defects
is only obtained for the last decade of time@3#.

B. Corrections to scaling and parameter space

Our goal is to ascertain why previous studies have
measured the expected exponents and then, if possibl
perform simulations in the asymptotic scaling regime to o
tain precise exponent values. In order to do this we fi
determine numerically the dependence of the correction
scaling on the parameters at our disposal. In doing this
will see that the difficulty in obtaining the asymptotic valu
of the exponents may have had as much to do with the
scale details of the simulation on the lattice as with the c
straints of lattice size and run times.

As it seems clear from all previous studies that the ph
behavior is dominated by the motion ofQ in the plane, we
restrict the order parameter to be of the form

Q5S Qxx Qxy 0

Qxy Qyy 0

0 0 2~Qxx1Qyy!
D , ~33!

in order to speed up the numerics. The quenches that
consider are envisaged to start at a high temperature
which the equilibrium phase is the disordered, isotro
phase. We take as the initial condition for the lattice Bol
mann simulations a configuration representative of this ph
in which theQab at each lattice point are random numbe
uniformly distributed in a small interval@2d,d#. More pre-
cisely, by writing

Qxx5A~3 cosf cosf21!/2,

Qxy53A cosf sinf/2,

Qyy5A~3 sinf sinf21!/2, ~34!
1-5
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the initial configuration is obtained by assigning, at each
tice point, a random number in the range@20.02,0.02# for
the amplitudeA and a random number in@2p,p# for the
phasef.

To ascertain a rough dependence of the correction
scaling on the various parameters of the system we exam
quenches below and close to the spinodal line for several
of parameters values. For this exploration of parameter sp
we used a lattice size of 2563256 and averaged over onl
two to five runs.

Figure 1 shows the Schlieren pattern and associated
flow from a typical run. The shading indicates the orientat
of the director field and the arrows the fluid velocity. Th
thing to note in such a diagram is the intersection of light a
dark ‘‘brushes,’’ which indicate the location of the61/2 dis-
clinations. It is apparent that the main features of the flow
the vortices associated with the moving disclinations. T
interaction of vortices in two-dimensional flow has the sa
form as the interaction of disclinations in the director field
one does not expect any qualitative changes in the sca
behavior.

We now compare five sets of data. The first four data s
are a quench tog53.25~note that the first-order transition i
at g52.7 and that the spinodal is atg53.0). The first is a

baseline run. In the secondḠ is given by Eq.~3! whereas in

the othersḠ is taken to be a constant and equal to 1. In
third we turn off hydrodynamics by relaxing the momentu
conservation constraint@i.e., the second equation in~16!# at
time t55000. The fourth has a value ofk ten times smaller
than the rest. The fifth data set is similar to the first exc
now the quench is deeper, tog53.7.

The correlation function forg53.25 and with the renor-

FIG. 1. Schlieren pattern~shading! and fluid velocity~vectors!
associated with the ordering of a liquid crystal after a quench fr
the isotropic to the nematic phase. The director in the darkes
gions is perpendicular to the director in the lightest regions~with
the other shade in between!. The shading on the Schlieren patte
has been rendered with only three shades of gray so as not to
scure the vector field. Disclinations of strength61/2 are located at
the intersection of dark gray and white ‘‘brushes.’’
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malized diffusion constant is shown in Fig. 2. There is
reasonable collapse of the data when the correlation func
is plotted againstr /Lcor(t). This is as expected from dy
namical scaling. However, even if a function does appea
collapse it is very hard to measure the quality of the colla
and hence this provides only a weak test of scaling.

Figure 3 shows the length scale obtained from the co
lation function Lcor as a function of time for all five data
sets. The exponentsfcor ,fde f ,fel obtained by fitting these
data, as well as similar data for the number of defects and
distortion energy, to power laws are given in Table I. A
though, as there are corrections to scaling, this is not a g
way of obtaining the exponents, it does allow for a cle
comparison between the different parameter sets. A more
phisticated way of estimating the growth exponents is to
tain an effective exponentf(t* ) by performing a simple
linear fit to the plots of lnL versus lnt ~e.g., Fig. 3! for data

e-

b-

FIG. 2. Correlation function forg53.25 and with renormalized
diffusion constant. Inset: unscaled correlation function for tim
betweent5159 and 8913. Main figure: correlation function as
function of r /L(t) whereL(t) is determined as the length at whic
the unscaled correlation function crosses 1/2.

FIG. 3. Length scale obtained from scaling of correlation fun
tion as a function of time. The lines are power law fits and t
symbols correspond to box,g53.25, baseline; diamond,g53.25,
renormalized diffusion constant; filled triangle,g53.25, hydrody-
namics off; star,g53.25, smallk; hollow triangle,g53.7 as base-
line. In this figure~and all others! times are multiplied byG to make
them dimensionless and distances are measured in units of th
tice spacing of the simulation.
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TABLE I. Comparison of the exponents obtained by fitting the data from runs on small systems~e.g.,
below Fig. 4! to a power law. The statistical errors;0.003 and the systematic errors;0.015 ~as the end
points of the fit are changed!.

Run Parameter set Exponents
fcor fde f fd

Baseline g53.25, Ḡ51, k50.02 0.42 0.406 0.35

Renorm. diffusion g53.25, Ḡ5(12
3
2 Tr Q2)22, k50.02 0.45 0.43 0.365

No hydrodynamics g53.25, Ḡ51, k50.02 0.42 0.398 0.345

More localized defects g53.25, Ḡ51, k50.002 0.36 0.33 0.27

Deeper quench g53.7, Ḡ51, k50.02 0.39 0.36 0.31
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in the interval t2m ,t2m11 , . . . ,t* , . . . ,tm21 ,tm . m58 is
used in the fits presented here.

From these preliminary runs withL5256 we can make
the following observations.

~1! A renormalized diffusion constantḠ seems to help in
the sense that the exponents are closer to the expe
asymptotic value of 1/2. However this turns out to be mos
an early time effect. To see this we plot the effective cor
lation length exponent as a function of time in Fig. 4 for t
first two data sets in Table I. We see that for the baseline d
set the exponent first decreases and then increases with

whereas with the renormalized diffusion constantḠ the ex-
ponent immediately starts increasing with time toward
asymptotic value. Thus, we are effectively accessing lon
times with the renormalized diffusion constant. This is re
sonable because the initial ordering in the system, where
order parameter saturates away from the defect cores,
diffusive process.

~2! Hydrodynamics appears to speed the ordering v
slightly, but not by a significant amount. The crucial test h
is the run denoted in Fig. 3 by filled triangles where a
given time step (t55000) we have explicitly switched of
the hydrodynamics by randomizing the velocity directio
after each collision step. One can see in Fig. 3 that no
nificant change occurs with respect to the run in which
hydrodynamics is fully taken into account. This conclusi
agrees with previous results by Fukuda@7# even though his
formulation of the model is somewhat different from ours

~3! Reducingk reduces the size of the defect cores a
we find that changingk has a significant effect on the result

FIG. 4. Effective exponent for the growth of the correlatio
length as a function of time. Empty triangle,g53.25, baseline;
filled triangle,g53.25, renormalized diffusion constant.
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To see this we compare results for the baseline run withk
50.02 to the run with a value ofk ten times smaller (k
50.002). The effective exponent extracted from the corre
tion function is shown in Fig. 5. There are a few importa
things to note from this figure. First the effective exponen
not a monotonic function of time: it reaches a maximu
value at a given time and then it decreases as time is fur
increased. This is true for the baseline case as well, but
time at which it happens is much larger than for the run w
more localized defects. Note that this effect has also b
observed in previous simulations@6# and interpreted as the
onset of freezing in the dynamics, due mainly to the fin
size of the system simulated. However, the fact that the ef
is stronger for smaller values ofk suggests instead a lattic
discretization effect.

As an obvious length scale in this problem is the size o
defect corea it is tempting to takek as small as possible to
minimize this scale. However, once a defect core is of
order of a lattice spacing, it becomes energetically adva
geous for a defect to be centered in a plaquette of the la
as this will minimize the distortion in the amplitude of th
order parameter that is actually realized on the lattice,
shown in Fig. 6. This creates an additional potential wh
can trap the defect. The height of this potential is a decre
ing function ofk as, if the amplitude distortion caused by
defect is spread over many sites, the defect will be less s
sitive to exactly where it is centered.

This effect occurs at later times in the simulation beca

FIG. 5. Effective exponent for the growth of the correlatio
length as a function of time. Empty triangle,g53.25, baseline;
filled triangle,g53.25, k51/10 of the baseline value. The timet*
has been multiplied by 1/10~i.e., time is scaled by 1/k) for the
small k case.
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interdefect interactions decrease as the defect spacing
creases. At the point where the lattice pinning potential b
ances the defect-defect interactions motion will stop. Inde
even before this time, the lattice pinning will cause an ad
tional frictional drag on the defects, which could be det
mental in trying to fit to theory. Thus we see that takingk
small to try to achieve longer length scales~as appears to
have been done in almost all previous work! is a trap better
avoided.

Second, as can be seen from Fig. 5 , if the time is sca
by k the effective exponent for the baseline case appear
continue on the same curve as for smallerk. At first this
seems surprising since one might expect time to scale
the diffusion constant, but not necessarily withk. To see why
it occurs one can substitute a form for the director o
uniaxial nematic away from the defect core,n
5(cosu, sinu), into Eq.~2!. Ignoring the hydrodynamic flow
one obtains a diffusion equation foru,

] tu5Du¹2u, ~35!

whereDu5kḠ, confirming that the relevant diffusion con

stant is proportional to bothḠ andk @15,11#.
~4! Finally, the data for deeper quenches show an ex

nent further from 1/2. This is also due to the pinning pote
tial described above. As can be seen from the effective
ponents shown in Fig. 7 the freezing happens at an ea
time for the deeper quench. This is not surprising as def
are more localized further from the transition and hence
lattice pinning potential will be greater.

V. ASYMPTOTIC RESULTS: CRITICAL EXPONENTS

In the previous section we examined the kinetics of ph
ordering in a system of linear sizeL5256 averaging over
only a few initial configurations. This allowed us to explo
in a more systematic way the space of the parameters~i.e.,g,

k,Ḡ) relevant to the kinetics. In particular, we found that

FIG. 6. Two largest eigenvalues ofQ along a cut joining the
center of two61/2 defects moving to annihilate each other. T
squares and diamonds are for the case withk50.02 and the stars
and triangles fork50.5. The dips are an indication of the lattic
pinning potential. The abscissa is scaled by the lengthAk/p0 to
make it dimensionless~all other parameters are the same!.
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using a renormalized diffusion constantḠ and values ofk
big enough to avoid pinning effects better scaling behavio
achieved in less time. Using this knowledge we now sim
late bigger systems and average over more starting con
rations to obtain more precise results for the dynamical c
cal exponents of the model.

We focus on the scaling behavior of the correlation fun
tion, the average defect separation, and the elastic energ
phase separating systems of linear sizeL5512. Averages
were taken over 20 initial configurations. Quenches were

for g53.25 andg53.0. In both casesk50.3 andḠ51/(1
2 3

2 Tr Q2)2.
Figure 8 shows the time evolution of the length sca

obtained from the correlation function for the two data se
Note that at late times the data~on the log-log plot! display a
linear behavior with slope close to 1/2. A simple linear fit
the data witht>tx52239 gives

fcor50.5060.01 ~36!

for g53.25, and

fcor50.4860.02 ~37!

for g53.00. The errors were obtained by varyingtx between
502 and 5012. This systematic error was much more sign
cant than statistical errors evaluated from thex2 statistics of
the linear fit.

FIG. 7. Effective exponent for the growth of the correlatio
length as a function of time. Triangle,g53.25, baseline; box,g
53.7, baseline.

FIG. 8. Length scale obtained from the correlation function a
function of time. The line is a guide to the eye and has slope
The symbols correspond to empty triangle,g53.25, and filled tri-
angle,g53.00.
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As we have argued in the previous section a better qu
tity to check is the effective exponentf(t* ) as a function of
fitting time t* . In Fig. 9 we show the effective exponent fo
the correlation lengthfcor(t* ) as a function of inverse time
Note that the asymptotic value of 1/2 is clearly reached
the last decade in time. As far as we know this is the fi
time that strong evidence has been obtained for the con
tured 1/2 dynamical exponent for a phase separating nem
liquid crystal.

Similar plots for the effective exponent for the number
defectsfde f(t* ) are shown in Fig. 10. By looking at the hig
t* behavior we obtain

fde f50.4760.03 for g53.25,

fde f50.4860.03 for g53.00, ~38!

where the errors have been estimated from the fluctuation
the effective exponents from a moving average with few
points ~four in this case!. Again, we see that the asymptot
value of the exponent is consistent with 1/2.

Finally, Fig. 11~a! shows the exponent obtained from th
elastic energyfel(t* ) . In this case a simple linear fit pro
duces an asymptotic value smaller than 1/2 (;0.4 in the
plot!. This is mainly due to the logarithmic corrections to t
scaling of the elastic energy@Eq. ~27!# which depress the
effective growth exponent for the characteristic ene
length with respect to the correlation length exponent@Eq.
~29!#. Indeed, by adding the logarithmic corrections to sc

FIG. 9. Effective exponent for the growth of the correlatio
length as a function of time. Filled triangle,g53.00; empty tri-
angle,g53.25.

FIG. 10. Effective exponent for the growth of the defect se
ration length as a function of time. Filled triangle,g53.00; empty
triangle,g53.25.
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ing as in Eq.~29!, we can bring the exponent into agreeme
with that obtained from the correlation function, as shown
Fig. 11~b!.

By extrapolating the effective exponents at hight* values
we obtain,

fel50.4760.03 for g53.25,

fel50.5060.03 for g53.00. ~39!

VI. SHALLOW QUENCHES

So far, we have examined the late stage kinetics of
orientational ordering, long after the amplitude has order
In this regime, the ordering has shown dynamics consis
with that expected for a diffusiveXY model. It is also inter-
esting to examine the early stage dynamics and shallo
quenches where one may observe an interaction betwee
two symmetries of the problem@i.e., those of the scalar orde
parameter and the essentiallyO(2) symmetry of the orienta-
tional order#.

First we examine what is naively expected for the amp
tude ordering dynamics. Assuming that the orientational
grees of freedom are completely ordered the free energy
be written in terms of just the amplitude of the order para
eterq @20#,

F5
1

2S 12
g

3Dq22
g

9
q31

g

6
q4. ~40!

This is shown as the solid curves in Fig. 12 for the caseg
52.7 ~phase transition point! and g53.0 ~spinodal line,
where the barrier between the isotropic and nematic st
vanishes!. One expects the presence of a free energy bar
between the isotropic and nematic states to affect the ph
ordering dynamics. In the presence of a barrier a finite reg
of the nematic phase must be nucleated to initiate grow
Beyond the spinodal~which occurs atg53.0) the system
will order spontaneously by spinodal decompositi
throughout space. If we artificially orient the director fie
before quenching, this is indeed what is observed.

-

FIG. 11. ~a! Effective exponent for the growth of the elast
energy length as a function of time triangle,g53.00; box, g
53.25. ~b! Effective exponent for the correlation length~filled tri-
angle!, and the growth of the elastic energy corrected for the lo
rithmic scaling of Eq.~29! ~empty triangle!.
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However, in a normal quench where the director is n
oriented, one observes somewhat different behavior. In
ticular, there is a region where one might expect spontane
ordering @3.0,g,gs(k,L)# which in fact exhibits a two-
stage growth process in the absence of a nucleating site
domain growth from a nucleating site~as opposed to spin
odal decomposition! if one is provided.

Figure 13 shows the amplitude as a function of time
g53.05 for a system which is initially disordered and
which we have not supplied any strong nucleating sit
There are clearly two different stages of growth. In the fi
stage the amplitude grows very slowly for a long time. Th
the system abruptly orders, very quickly reaching the eq
librium value. If instead we supply the system with nucle
ing sites at the beginning of the simulation it orders mu
more quickly, with domains growing from the nucleatin
sites. These observations are consistent with the presen
a free energy barrier that decays with time.

The free energy barrier can be identified as resulting fr
the free energy of the orientational order. There is a ti
dependent quadratic term in the free energy due to the
tortion. The distortion energy is proportional tokq2 @see Eq.
~1!# so that one has an effective term

F d}kq2Lde f~ t !22 ln@Lde f~ t !/a#, ~41!

using Eq. ~27! with Lde f(t) being the separation betwee
defects. As a result, not only does the state atg53.0 remain

FIG. 12. Free energy (3103) versus magnitude of the orde
parameterq for g52.7 ~left! andg53.0 ~right!. Solid lines corre-
spond to the assumption of complete orientational order and da
lines correspond to the spatially averaged free energy for diffe
values of the defect separation~6 and 12 in left figure and 2 in righ
figure!.

FIG. 13. Amplitudeq versus time for a quench tog53.05. The
initial fractional noise onq (;1026) is very small and cannot caus
ordering by nucleation and growth.
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metastable but the global free energy minimum atq.0 may
not be a minimum at zero time. This contribution to the fr
energy is included in Fig. 12 for different values ofLde f .

The domain growth in the nucleated case is now ea
understood. Why there is eventually ordering with no nuc
ation sites still requires some explanation. Equation~41!
gives the average free energy contribution from the orien
tional order. However, locally there are regions where th
is higher orientational order so that some gain in free ene
can be made by increasingq in these regions. These region
are still not large enough to gain sufficiently from this to p
for the cost of an interface between fully ordered and dis
dered states so the elastic energy suppresses the growthq,
keeping its typical value very small. However, as we ha
already pointed out in Eq.~35! the diffusion constant for the
orientational ordering is independent ofq, as long asq.0.
Hence the orientational ordering can proceed.~See, for in-
stance, the number of defects as a function of time show
Fig. 14.! As the orientation proceeds,Lde f grows and even-
tually the free energy barrier is small enough that the sys
can form a sufficiently large region of the amplitude order
phase to nucleate growth. Once such a region is formed
amplitude ordering can proceed rapidly.

VII. SUMMARY AND DISCUSSION

To summarize, we have used a lattice Boltzmann al
rithm to investigate the phase ordering of liquid crysta
quenched from the isotropic to the nematic phase. The
tem is described by the Beris-Edwards equations of liq
crystal hydrodynamics. These are written in terms of a ten
order parameter which means that the dynamics of topol
cal defects that drives the phase ordering appears natura
the simulations. The liquid crystal moves toward an equil
rium described by the Landau–de Gennes free energy.

The flexibility of the numerical scheme allows an inve
tigation into how the ordering process is affected by t
model parameters. In particular, we find that if the leng
scale defined by the size of the topological defects is take
be too short the cores are pinned by the lattice as the si
lation proceeds giving an incorrect value for the growth e
ponent. This is likely to have been the problem faced
other authors who consistently obtained a value less than
1/2 expected from scaling arguments.

Averaging over 20 runs on a lattice of linear size 512
obtained fcor50.4960.02, fel50.48560.03, and fde f

ed
nt

FIG. 14. Number of defects versus time for a quench tog
53.05.
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50.47560.03. The value forfel was fitted using logarith-
mic corrections. Hydrodynamic flow speeds up the order
slightly but does not change the scaling behavior. This
reasonable because, in two dimensions, interactions betw
s.
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the flow vortices set up by the moving defects have the sa
logarithmic form as the defect-defect interactions the
selves. Thus theoretical and numerical results are now
pleasing agreement.
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